Acute toxicity of organophosphorus compounds in guinea pigs is sex- and age-dependent and cannot be solely accounted for by acetylcholinesterase inhibition.
نویسندگان
چکیده
This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.
منابع مشابه
Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents.
The nerve agents soman, sarin, VX, and tabun are deadly organophosphorus (OP) compounds chemically related to OP insecticides. Most of their acute toxicity results from the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that inactivates the neurotransmitter acetylcholine. The limitations of available therapies against OP poisoning are well recognized, and more effective anti...
متن کاملSilver nanoparticle induced muscle abnormalities : A sub-chronic dermal assessment in guinea pig
Nanosilver has recently been recognized as an antimicrobial agent. Although this nanoparticlecan be used in medical applications but its dermal and systemic toxicity via dermal exposure hasnot been completely determined yet. The aim in this study was to investigate the potential dermaltoxicity of Nanosilver in subchronic method. Before the colloidal silver nanoparticle toxicityevaluation, their...
متن کاملOrganophosphorus Pesticides Decrease M2 Muscarinic Receptor Function in Guinea Pig Airway Nerves via Indirect Mechanisms
BACKGROUND Epidemiological studies link organophosphorus pesticide (OP) exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE) inhibitio...
متن کاملSub-chronic Dermal Toxicity of Silver Nanoparticles in Guinea Pig: Special Emphasis to Heart, Bone and Kidney Toxicities
Silver nanoparticles (Ag NPs) have been widely used as new potent antimicrobial agents in cosmetic and hygienic products. Present study compares the tissue levels of Ag NPs in different organs of Guiana Pigs quantitatively after dermal application and analysis the morphological changes and pathological abnormalities on the basis of the Ag NPs tissue levels. Before toxicological assessments,the...
متن کاملNeurotoxic disorders of organophosphorus compounds and their managements.
Organophosphorus compounds have been used as pesticides and as chemical warfare nerve agents. The mechanism of toxicity of organophosphorus compounds is the inhibition of acetylcholinesterase, which results in accumulation of acetylcholine and the continued stimulation of acetylcholine receptors. Therefore, they are also called anticholinesterase agents. Organophosphorus pesticides have largely...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 328 2 شماره
صفحات -
تاریخ انتشار 2009